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Abstract—Flow and heat transfer characteristics of laminar mixed convection in a radially rotating
semiporous channel with a uniform transpiration and a constant wall temperature gradient are examined.
The buoyancy effect is taken into account through the consideration of the density variation in the
centrifugal force term. A similarity solution is sought: and then the effects of rotation, transpiration and
wall heating on the velocity and temperature fields. the skin friction, the pressure drop and the heat transfer
rate are investigated by the solution of the two coupled quasilinear equations. Flow-reversal phenomena
can be caused by the transpiration and buoyancy effects. Two modes of flow reversal and the related critical
conditions are studied in detail to explore the mechanism of the mixed convection.

INTRODUCTION

Tue rrump flow and heat transfer in porous-walled
flow passages have received a great deal of attention
in the past decades due to their wide application in
a variety of thermal systems such as gas-turbine
rotor blades. combustion chambers, exhaust nozzles.
porous-walled flow reactors and solar energy systems.
The theoretical study may be traced back to Berman’s
similarity solution [1] for the incompressible fam-
inar fully-developed flow in a two-dimensional fully
porous-walled channel (FPC) with a uniform trans-
piration. Later, Yuan and Finkelstein {2] developed
the counterpart similarity solution for flow in a
porous-walled tube. Since then, the research in this
arca has become vital. The corresponding heat transfer
characteristics were also investigated extensively [3—
6). Among these investigations, Carter and Gill's work
[3] is noteworthy. The similarity equations for mixed
convection in vertical and horizontal FPCs and
porous-walled tubes were proposed and solved by
using methods of weighted residuals. Suction and
injection were considered. but only the solutions with
a small wall suction (Re, < 1) were obtained due to
the limitation of the method they used.

Flow and heat transfer characteristics in the semi-
porous channel (SPC) are somewhat different from
those in the FPC. The former case has been studied
only in a few previous works. Donoughe [7] and
Eckert et al. [8] solved Berman’s equation for fluid flow
in SPC. Heat transfer in the hydrodynamic and thermal
entrance region of SPC with a tail-end-plate was first
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examined numerically by Rhee and Edwards [9)
Later, Sorour and Hassab [10] used the solution of
Berman's equation to recast the encrgy equation into
an eigenvalue problem which was then solved numeri-
cally. More recently. Sorour et «l. [11] reconsidered
Rhee-Edward’s flow configuration with a hnearly
varying transpiration velocity.

At an engincering standpoint, the transpiration
cooling in the turbine rotor blades can be modelled
as the mixed convection in a radially rotating SPC.
Rotation of the channel may generate significant
effects on the flow and temperature fields. To the
authors’ best knowledge. however. the mixed con-
vection in the radially rotating porous channels has
not been reported in the literature vet. The typicul
transpiration cooling channel in turbine blades is of
low height and width aspect ratio as those used n the
engine tests [12, 13]. Therefore. to gain insight into
the fundamental nature of this complex flow field. a
two-dimensional mixed convection analysis in a radi-
ally rotating semiporous channel is proposed for the
problem. Both the case of radially outward and
inward main flows are studied: and the rotational
effects, including the Coriolis and centritugal-buoy-
ancy forces, are considered. By assuming a large semi-
span eccentricity and slenderness of the channel, and
imposing the thermal boundary condition of a con-
stant wall temperature gradient, the similarity equa-
tions are derived and then solved to examine the effects
of rotation, transpiration and wall heating on the
velocity and temperature fields, the skin friction, the
pressure drop and the heat transfer rate. A closed-
form analytic solution is found readily when wall
transpiration is absent. Flow reversal may be induced
by wall-transpiration and buovancy effects. The critical
conditions for the threshold of the flow reversal are
studied in various combinations of the transpiration
and wall heating parameters.
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Ce skin friction coefficient

E semispan eccentricity

f dimensionless stream function or
transverse velocity, V/V,,

g dimensionless temperature,
(T'— Tsw)/(Pe : ATcum)

H channel height

h heat transfer coefficient

k thermal conductivity

L channel length

Nu  Nusselt number, hH/k

P static pressure

P reduced pressure,

P+(p0*)[(X £ Xo)*+ Y7

dimensional and dimensionless pressure

departure, p’ = P’[p, U}

Pe Peclet number, Pr Re

Pr  Prandt! number, v/x

R position vector emanating from rotation
centre

Ra, rotational Rayleigh number,
(X.0*BAT.H? Pr)jv?

Re main flow Reynolds number, Uy H/v

Re, wall suction Reynolds number, V, H/v
rotation number, o H/U,

T temperature

AT. characteristic temperature difference, 1/
U,V velocity components

U, meanvelocityat X =0

mean velocity at axial location X,

Un = Ua(X)

NOMENCLATURE

dimensionless velocity components,
U/ UO and V/ UO

u,v

X, Y coordinates .
x,y  dimensionless coordinates, X/H and Y/H.
Greek symbols

a thermal diffusivity

B thermal expansion coefficient

é dimensionless wall temperature
difference, (T, — T.)/(Pe AT uy)

£ dimensionless semispan eccentricity,
E/H

0 dimensionless temperature difference,
(T-T))/AT.

u viscosity

v kinematic viscosity

I1 pressure-drop parameter,
Jol(— Re./pU2)(0P/ox)
+2Ro Re, (Uy/Uy) f1dy

P density

T solid wall temperature gradient

¥ stream function

w rotational speed.

Subscripts

cr critical condition

m mean

pw  porous wall

r reference condition

swW solid wall

w rotational condition.

THEORETICAL ANALYSIS

Flow configuration and basic equations

Asshown in Fig. 1, a semiporous channel with solid
and porous walls separated by a height H rotates at
a speed w about an axis perpendicular to the axis of
the channel. The rotational axis lies at a distance X
away from the origin of the coordinate system which
is fixed on the channel entrance. Fluid flows along the
channel axis as well as bleeds out through the porous
wall at a constant transpiration velocity V,, along the
channel length. Two modes of main flow, radially
outward and inward, are considered. The flow is
assumed to be laminar and steady, and the com-
pression work and the viscous dissipation are negli-
gible. Since the buoyancy effect may be significant
in the presence of the high centrifugal acceleration,
Boussinesq’s approximation is invoked to allow for a
linear variation of density with temperature, in the
centrifugal force term. The gravitational effect, in this
problem, is comparatively small and can be neglected.

Subject to the above conditions, the conserva-
tion equations for mass, momentum and energy are

depicted as follows [14] :
V-v=0
(V-V)V =vWV-VP'/p,
+B(T—-T)wxwoxR) —2oxV (2)
(V-V)T = aV>T (3)

M

where P’ = P— P, is the pressure departure from the
reference condition, subscript r denotes the condition
at the origin (0,0) and is used as the reference con-
dition, and R the position vector emanating from
the rotation centre. The governing equations can be
writtten in dimensionless forms as

Tro=0 )
cx oy
ou cu 1 _, &p
U T == = 7 —as
ox 0y Re éx
Ra, {x+x,
—_ R .
PeRe( ~ >9+2 o-v (3)
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Vw = constant
BEEREERRREN] L
5= wk R main
—~ R L (X.Y) = A H .
Xo L/2 L/2
Xe
(a) Radially outward flow, R = (X+X )i+ Y]
Y
Vw = constant
R SEEREREEREENL
o= ~wk R main
o R X — X.Y) <= flow IH
% [ SW
X, 12 —-’
Xo ]
(b) Radially inward flow, R = (X=X, )T+ Y]
FiG. 1. Flow configurations and coordinate system: PW, porous wall: SW_ solid wall.
Ct o stream function is defined as
-l o= I S
X oy Re cy lp(‘\-”‘.) =y, (x)" f()) (%)
. Ra, (}')0_2}30.“ (6) By defining w = ¢W:Cv and v = — ¢W:Cx, one has
Pe Re \ x, , ] ‘
wu, = f7(y) and v, = fy). 9)
ét ¢ L, _ '
Mas +e N EV 0. () Note that equations (9) satisfy continuity equation

The reference velocity U, used is the mean velocity
at X =0, T, = T,(0) is the solid-wall temperature
at X =0 and AT, is the characteristic temperature
difference to be determined later. The two non-dimen-
sional groups, the rotation number Ro and the
rotational Rayleigh number Ra,, characterize the
Coriolis force and the centrifugal-buoyancy effects,
respectively. On the right-hand side of equation (5).
the upper plus sign in the buoyancy term is taken if
the main flow is radially outward and the lower minus
sign if the flow is radially inward.

The boundary conditions on the solid and porous
walls are u=v=0 and 0 =0,,(x) at y =0 and
u=r-~r,=0and = 0,.(x)aty = 1. The subscripts
sw and pw denote the solid wall and the porous wall,
respectively.

Similarity transformation

To achieve a similarity solution for the above
governing equations. the proper invariant profile
functions must be found. Since the fluid is substracted
through the porous wall at the rate of pV, per unit
length, the local mean velocity along the channel
length 1s thus U (X) = Uy—V,X/H or in a dimen-
sionless form wu,(x) = 1 —r,x. Following Berman's
original proposal for the fully-developed flow, the

(4) automatically. Eliminating the pressure terms in
the momentum equations (5) and (6) by a cross
differentiation and using equations (9). one has the
resultant equation of motion

Sr=Re fI" =S 1)

Ra, (x+x,c¢0 v CO
= e ;—) (10)
X, Cx

Peru, \ x. (v

N

where Re, = V' H/v 1s the wall Reynolds number
which characterizes the effect of wall transpiration.

To simplify the analysis, two approximations are
employed. First, the channel length is sufficiently
small as compared with the semispan eccentricity [15].
This leads to simplifications (X+X)/X, = £1 and
w’(X+ X,) = +w>X.. Second. the coolant channel is
very slender, Y'X, « I, and also has ¢0/¢y >» ¢0:¢x.
Consequently, the last term in equation (10) can be
ignored.

Two situations, the buoyancy-opposed mixed
convection with Ra,,(x+x,)'x, > 0 and buoyancy-
assisted one with Ra,(x+x,)'x. < 0 are considered.
To unify the equation of motion, the sign of (x % xv) x,
can be absorbed into the parameter Ra,,. The positive
Ra,, is responsible for the case of buoyancy-opposed
flow and the negative Ra,, stands for the case of buoy-
ancy-assisted flow. Finally. equation (10) reduces to
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Ra, c0
Pe-u, &y’

S —Re, (ff"=ff") = an

Equation (11) implies that the similarity form exists
if 8(x, y) is of the form

0(x, y) = 0, (X) + Peu, () g(v). (12)
Substituting equation (12) into the energy equation

(7), one obtains
T,
AT, /

Tou(x)

Pe-u, (x)-AT.”

g"—PrRe,(fg'—[f9) =

(13)

To attain the similarity, T,,(x) must be linear
in x and, for convenience, it is specified as
To(x) = T, (0)+AT.x. The characteristic temper-
ature difference can now be determined at AT, =
tH, in which 7 is the slope of the prescribed
solid-wall temperature. By defining g(1) = d, the
porous-wall temperature 7, (x) can also be expressed
in a linear form. The parameter J represents the tem-
perature difference between the solid and the porous
walls ; and therefore, it is also an index of asymmetry
of the wall heating.

Finally, by using the similarity variables f(y) and
g(») and imposing different constant temperature
gradients to the walls, the resultant similarity equa-
tions are

S =Re (ff"=ff") = Ra, g’ (14
g"—PrRe.(fg—f9) =] (15)
The associated boundary conditions are
SO =f0)=f0=f1)-1=0
9(0) =g{1)—0=0. (16)

Flow and heat transfer parameters
The general expression for the skin friction co-

efficient is defined as
Cr = 2u(CU/¢Y), /pUL(X). 17

Then, based on the velocity solution of the problem,
the products of the friction coefficient and the
Reynolds number for the solid and porous walls are
Crow Re, = 2£7(0) (13
and
Cipw Re, = =21"(1) (19)

respectively. Re, is the Reynolds number based on the
local mean velocity, U, H/v.

The pressure-drop parameter IT is defined as the
cross-sectional average of

Re. (6P U,
— i — 2 —
U2 <6x—>+'R" Re. (m)f

wherein the contributions of the Coriolis and cen-
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trifugal forces have been involved, and

M= —f"0)- Rawj; g9(»)dy (20)

where
n W’ ,
P= P+ (x4 X0+ 17

is the reduced pressure.

The heat transfer rate is characterized by the Nus-
selt number. From the heat balance at the wall, the
Nusselt number can be defined as

Nu=hH/k = —(¢T/oY),/(T,—Ty) @b
where
l H
T, (X) = m'[) Urdy

is the bulk temperature of the fluid. The resultant
Nusselt numbers at solid and porous walls can be
written as

i 1
Nug = '(0)] j fgdy 22)
;| JO

{ 1
Nit, = g'(1)] (5—J g d_v).

In the case of Re, # 0, the integral in equations
(22) and (23) can be evaluated directly by integrating
energy equation (15)

and

@3

v é 1 , ,
J; Sfgdy =§+W[1+g 0)—-g'(D]. (24

When transpiration is absent, this integral can be
evaluated simply by using the analytic solutions of
zero transpiration.

ANALYTIC SOLUTIONS FOR ZERO
TRANSPIRATION

Equations (14) and (15) with the associated bound-
ary conditions (16) describing the present problem are
coupled high-order quasi-linear differential equations.
Exact analytic solution to this problem is almost im-
possible. The case of zero transpiration, i.e. Re, = 0,
however, removes the nonlinearity and highly
simplifies the system. In this circumstance, one has

f'—Ra,f =0 or fY—Ra,f=/f0). (25
The corresponding five boundary conditions are
SO =70 =fDH-1=f(1)=0
and
f¥(0) = Ra, [5—Jo §ASY) d}']- (26)
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Mathematically, the solutions are different in the
cases of Ra, =0, >0 and <0 corresponding phys-
ically to the pure forced convection, the buoyancy-
opposed and the buoyancy-assisted mixed convection.
respectively. The closed-form solutions are found
analytically as follows.

A. Forced convection (Ra, = 0)
S =3y7=2)°
gy = (@ =Hy+y' =it

27)
(28)
This is the so-called Poiseuille-type flow.
B. Buoyancy-opposed mixed convection (Ra,, > 0)
f(3») = C,+C,ysinh Ky + Cycosh Ky

+C,sin Ky+Cscos Ky (29)

. !
g(») =dv+ X {C.{(cosh Ky +cos Ky)

—v{cosh K+cos K)y—2(1 —y)}+ Ci(sinh Ky
—y-sinh K)+Cs(sin Ky—y-sin K)}  (30)
where
Cs= A]; {2 sinh K(1 —cos K) — Kd[sin K-sinh K
-~ (14cos K)(cosh K— )]}
C,= Z\L, {Kd[sinh K(cos K—1)+sin K(cosh K— 1)}

—2sin K'sinh K}
C, = C,(cosh K—cos K)/sinh K+ Cjsin K/sinh K

C.=~Cy; Cy=~Cy—Cs
A, = —4[sinh K(1 —cos K) —sin K(cosh K—1)]
K = Ra'*.

C. Buoyancy-assisted mixed convection (Ra,, < 0)

. “(0) .
f() = /7(53) sin ay - sinh ay
"0y .
+ —f4(f}) (sin @y *cosh ay—cos ay - sinh ay)
al’ 0
+ /4(1(4 ) (I1—cosay-coshay) (31)

<

g(y) = oy~ e

[sin @y cosh ay

—cos ay+sinh ar—y(k,—k;)]

“(0

— %4—) [1 —cos ay-coshay—y(1~k,)]
"

+ f—Q [sinay-coshay
8a

—cos ay 'sinh ay —y(k,+ k)] (32)
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where
1 . s <
f0) = AL [8a®d(hy—ky) —8u 'k (k,+ky)

—8a (1 —k ) (k.—k,)—16a°5k (1 —k )]

1 L
F7(0) = Bty =k )+ 160701 =k (K 3+ K)
+8al(ks+ky) = 16a"k (ky— k1))
1 . N
FUO = 1160 =k (kb k) + 3206k

—16aS(k3—k3)—=16a"k (ks —k )

Ay =20 ks~ k) +aat (L —k ) (ky+ k)
—4a kit s+ k) +2a (ko +k )kI—k7)
—8a'k (1 =k (ki —ky)

k, =sina-sinha; k,=sina-cosha

ky=cosarsinhu: ky=cosa-cosha

a=(- Ra,, ).

NUMERICAL METHOD OF SOLUTION

Solutions of non-zero transpiration are solved by
using a numerical method described in this section.
The set of equations (14)—(16), is a sixth-order quasi-
linear system with three boundary conditions at each
end of the finite interval 0 < 3 < 1. With the guessed
values of missing boundary conditions at y = 0. i.c.
f7(0) = xy, f7(0) = 2, and ¢’(0) = x;, the boundary-
value problem can then be converted to an initial-
value one, and solved by using a fourth-order Runge-
Kutta scheme. The values «,, 2, and x; are sought
under the conditions of f(1)=1. f'(1)=0 and
g(1) = . The corrections Ax,’s can be obtained by a
modified Newton’s method [16] and, therefore. the
initial guesses can be updated. The procedure is
repeated until the criterion, max (Ax,.Az..Ax) <
10~ 7 is satisfied.

In a preliminary numerical experiment, it is found
that the integration procedure with a step sizc
Ay = 0.01 is most pertinent and 1s adopted through-
out the numerical computation. In the determination
of the location of the flow reversal a step size
Ay = 0.005 is used. The analytic solutions in the last
section provide good initial guessed values for low-
Re, cases, and the calculations for the larger values
of Re, can be performed with the knowledge of the
preceding cases. In the calculation, it is found that
only a few iterations are needed to obtain a convergent
solution. The number of iterations increases with the
increase in the value of Re,. The convergent solution
can be easily obtained for Re, < 7. but it is hard to
get for Re, > 7. This is attributed to the stiffness of
the problem as Re, increases. The solution can be
obtained by introducing under-relaxation factors 4, to
the corrections of x,. i.e. %,+/,Ax,.
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RESULTS AND DISCUSSION

General features

Since air is considered as the coolant, a value of the
Prandtl number of 0.7 is used in the present com-
putations. Besides, there are four parameters, Ro,
Ra,, Re, and é, involved in the problem. Among
these parameters, the rotation number Ro charac-
terizing the Coriolis effect was eliminated in the
cross-differentiation of the x- and y-momentum equa-
tions. Physically, the Coriolis force, provides only the
pressure distribution in this two-dimensional channel.
The main flow Reynolds number is absorbed into the
similarity variables and will not be presented
explicitly. The rotational Rayleigh number Ra,, plays
a very significant role in the problem. The magnitude
of Ra, depends mainly on the rotational speed and
the wall-temperature gradient z; and the sign of Ra,
depends on the type of buoyancy-assisted or buoy-
ancy-opposed mixed convection. The asymmetry of
the flow and temperature fields can be induced by
the wall-transpiration and asymmetric wall-heating
condition. The two sources of asymmetry are char-
acterized by Re,, and J, respectively.

Velocity and temperature distributions

Under the conditions of zero transpiration Re,, = 0
and symmetric wall heating é = 0, the flow and tem-
perature fields in the channel are symmetric as shown
in Fig. 2. The velocity and temperature distributions
can be changed by the centrifugal force along the
channel axis. The fluid near the hot walls is heated
and retarded by the centrifugal-buoyancy force for
Ra, > 0, therefore, the velocity profiles near the
channel axis must be extruded to satisfy the global
continuity. The velocity profiles are distorted con-
tinuously with the increasing Ra,. As Ra, = 500.6,
the wall shear becomes zero. It is a critical value for
the threshold of the flow reversal which occurred at

30— 17T
Rew=0 Ra,,
25k =0 1000 =
2.0} 500.6 .
15} 0 -
£ =500
1.0
100
0.5 —~2000
0.0
—6234
—-0.5 PURE N W R SO SR SN BT
0.0 0.2 04 08 08 1.0
y
(a)

—r—T
\ Rew =0 i
6=0
-0.05} Ra,, ~
I —8234 1
-0.10} —2000 E
g - 1001 b
-0.15 e
-500
L 0 .
500.8
-0.20} 1000 E
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30 —————————
Ra, =0 Rey
25 L 5=0 14.5 ]
13.12
2.0 - 4
8
15 ¢ 06 ]
I
1.0 |
0.5 L
0.0
~-05 L v a1
0.0 0.2 0.4 0.6 0.8 10
y

F1G. 3. Forced flow solution of semiporous channel flow.

the walls. On the contrary, in the case of Ra, <0,
the velocity near the walls increases and the velocity
profile near the channel axis is flattened. The flow
velocity at the centre of the channel reduces to zero
as Ra, = —6234. This is a critical value for the in-
field flow reversal. From Fig. 2(b), it is evident that
the temperature solution can also be altered by the
buoyancy effect. The larger the local velocity is, the
cooler the fluid is.

In the case of pure forced convection, Ra, = 0,
equations (14) and (15) are decoupled and the equa-
tion of motion (14) is reduced to the so-called Berman
equation. The solution is shown in Fig. 3. The peak
velocity shifts toward the porous wall due to the wall
suction. The local velocity in the channel remains non-
negative until a critical Re,, is reached. The critical
Re,, for the flow reversal in the SPCis 13.12.

Figure 4 shows a typical case of the buoyancy-
assisted flow with an asymmetric wall heating,

0.00 1

025 1
0.0 0.2 04 08 08 1.0

y
(b)

F1G. 2. Symmetric flow and temperature fields with Re, = 6 = 0.
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0.2 ——
0.1t

—r—T T

Ra, = -500 4
§ = -02

0.0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.86

0.7+ 4

_0.8 n 1 1 1 PR RS i
0.0 0.2 0.4 0.6 0.8 11O

y y
(a) (b)
F1G. 4. Combined effect of suction and buovancy in the cases of mixed convection with asymmetric wall
heating.
Ra,= —500 and 6 = —0.2, in which a behaviour  Table 1. Nusselt number singularity in the case of asymmetric

caused by the coupled effect of wall suction and cen-
trifugal buoyancy is revealed. The wall and fluid
temperature difference, in the present SPC flow, is
increased by the suction effect as shown in Fig. 4(b),
and the buoyancy effect is augmented. The fluid near
the walls can thus be further accelerated by the extra
buoyancy force and a double-peak velocity profile can
be generated. This is different from the one shown in
Fig. 3.

Figure 5 shows the velocity and temperature dis-
tributions for the cases of flow reversal free (FRF) for
a suction rate Re, = 5 with various buoyancy and
wall-heating conditions. For a highly asymmetric wall
heating é = 0.5 or —0.5, the flow-reversal-free region
is very narrow, e.g. —138.0 € Ra,, € 132.9 in Fig.
5(a). the velocity profiles are not much distorted from
that of Ra, = 0. For small values of §, from Figs.
5(by and (f), the velocity profiles still present a slight
variation for the cases of Ra,, > 0. But in the cases of
buoyancy-assisted mixed convection Ra,, < 0, highly
distorted double-peak profiles result. The larger peak
occurs near the hotter wall due to the buoyancy assist-
ing effect. It is seen from Fig. 5(d) that, the asymmetry
of the flow field arises simply from the wall trans-
piration. From the general view of Figs. 5(a)—(g),
the temperature profiles are not so sensitive to the
buovancy effect as the velocity ones.

Flow and heat transfer parameters

The typical variations of the skin friction, pressure
drop and heat transfer rate are shown in Figs. 6-8. The
buoyancy-assisting effect, in general, may enhance the
heat transfer but with the attendant penalty of high
friction and pressure loss. On the contrary, the buoy-
ancy-opposing effect reduces the skin friction and
pressure drop as well as the heat transfer rate.
The present prediction of centrifugal-buoyancy effects
confirms the argument and experimental results pro-

wall heating: Re, =2 and 6 = 0.2

, N, Nty N
209.3 5.240 3.660 8.901
0 6.974 4012 ey

—200 9.939 4.521 14.48

—400 17.46 4.899 2226

— 600 85.04 524 90.2%

—610 106.6 5.260 1y

—630 218.0 5.293 2232

—640 460.5 5.309 4638

— 649+ - = 53212 -~

- 660 - 370.3 534 — 365

— 680 —131.2 §5.373 —125%

- 800 —25.99 5.558 —20.43
— 1000 —10.38 5.844 —-4.339
— 1500 —3.264 6.458 3.194
— 1896 —1.568 298

6.866 s

+Singularity due to T, -7, = 0.

posed by Morris [14], and Harasgama and Morris [17].

In some cases of asymmetric wall heating é # 0. the
singularity in the Nusselt number may appear like
that shown in Table 1. It is attributed to the situation
of T,,— T, = 0 and it will not destroy the validity and
usefulness of the Nusselt number [18].

Flow reversal and critical conditions

In the present rotating SPC, the flow reversal can be
induced by the centrifugal buoyancy and wall suction.
Two modes, namely wall flow reversal (WFR) and in-
field flow reversal (IFR), are presented.

In the symmetric flow (Re, = é = 0) as shown in
Fig. 2. it 1s seen that the flow is reversed near the
wall y = 0 due to the buoyancy-opposing effect. but
reversed at the channel axis due to the buovancy-
assisting effect. The pure suction effect tends to scp-
arate the flow near the solid wall as seen in Fig. 3.
Nevertheless, if the buoyancy and suction are both
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F1G. 5. Flow-reversal-free solutions of mixed convection with fixed suction rate Re,, = 5.
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F1G. 6. Skin friction in the cases of symmetric wall heating.
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FiG. 8. Heat transfer rate in the cases of symmetric wall
heating.

considered, the flow-reversal mechanism becomes
coupled and complicated. The IFR, in Fig. 4, induced
by the wall suction under the thermal influence is
distinct from the WFR mode presented in Fig. 3 with-
out the thermal effect.

Table 2 lists the critical Rayleigh number Ra, ., and
the location y,, where the flow reversal occurs. Figures
9 and 10 are the corresponding flow-reversal par-
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F1G. 9. Critical parameter map for flow reversal in the rotat-
ing SPC: FR, flow reversal; FRF, flow reversal free.

ameter maps. Figure Y shows the critical margin and
the FRF regime. For a given Re,, the bounding curve
of the FRF region consists of a cusp in the buovancy-
opposed flow regime (Ra, > 0), and a floral recep-
tacle-like part in the buoyancy-assisted flow regime
(Ra,, < 0). The general feature of this map is illus-
trated as follows by using the curves of Re, = 0 as a
typical example.

For Re, = 0, the FRF region is symmetric and a
cusp is located at é = 0. The flow reversal occurs at
both walls simultaneously. The left and right curves
to the cusp are critical boundaries corresponding to
the flow reversal at solid and porous walls. respec-
tively. Anyway, only the WFR mode appears in this
buoyancy-opposed flow regime. In the buovancy-
assisted flow, however, either the WFR or the [FR
mode is possible and its occurrence depends on the
thermal boundary condition, i.c. the value of 3. The
effect of § on the flow-reversal location can be found
in Fig. 10. In the zero-transpiration case. the TFR

FiG. 10. Flow-reversal location in the cases of buoyancy-
assisted mixed convection in the rotating SPC.
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Table 2. Critical conditions for the flow reversal

Re,=0 Re, =2
Opposed Assisted Opposed Assisted

6 Ra(lLCf );C\' RaOJ.C( .VCI' RaLLC\' .VCY Raw.cr ycr

1.0 62.28 1.000 —85.57 0.000 68.89 1.000 —68.18 0.000

0.8 75.34 1.000 —112.2 0.000 76.13 1.000 —90.96 0.000

0.5 109.9 1.000 —212.0 0.000 1114 1.000 —181.6 0.000

0.3 158.6 1.000 —527.1 0.000 161.6 1.000 —3515.3 0.000

0.2 204.0 1.000 —1175 0.194 209.3 1.000 — 1896 0.245

0.1 287.2 1.000 — 5308 0.437 299.5 1.000 —5032 0.455

0.0 500.61 land 0 —6234 0.500 249.1 0.000 —5166 0.520
-0.1 287.2 0.000 —5308 0.563 173.1 0.000 —3723 0.580
-0.2 204.0 0.000 —1175 0.806 131.9 0.000 —1614 0.735
-0.3 158.6 0.000 —527.1 1.000 106.3 0.000 —560.4 1.000
-0.5 109.9 0.000 —-2120 1.000 76.53 0.000 —214.8 1.000
-0.8 75.34 0.000 —-112.2 1.000 53.82 0.000 —113.1 1.000
-1.0 62.28 0.000 —85.57 1.000 44.92 0.000 —86.11 1.000

Re, =S Re, =17
Opposed Assisted Opposed Assisted

6 Rtl( .1 Yer Ra, et Yer RG‘ IX 4 Ver Rau.cr Yer

1.0 73.76 1.000 —39.40 0.000 90.19 1.000 —17.38 0.000

0.8 90.49 1.000 —55.32 0.000 176.0 1.000 —26.74 0.000

0.5 138.0 1.000 —132.89 0.000 102.4 0.000 —96.39 0.000

0.3 191.8 0.000 —541.3 0.315 46.08 0.000 —607.0 0.365

0.2 137.8 0.000 —2114 0.315 32.69 0.000 —2291 0.365

0.1 98.85 0.000 —4498 0.485 24.88 0.000 - 3891 0.510

0.0 74.61 0.000 —3363 0.555 19.95 0.000 — 1871 0.600
-0.1 59.24 0.000 —1832 0.630 16.60 0.000 —825.4 0.695
-0.2 48.90 0.000 —929.5 0.730 14.20 0.000 —502.3 0.765
-0.3 41.54 0.000 -512.5 0.850 12.39 0.000 —352.1 0.825
-0.5 31.85 0.000 —223.2 1.000 9.869 0.000 —206.8 0.930
—-0.8 23.54 0.000 —119.8 1.000 7.552 0.000 —119.1 1.000
-1.0 20.05 0.000 —92.02 1.000 6.528 0.000 —92.88 1.000

t —501 [19]; —507 {3] in gravitational field.

mode appears at |§| < 0.2407, beyond this regime the
flow reversal is switched to the WFR mode.

The presence of wall suction destroys the symmetry
of the curves as well as narrows the FRF region.
In the region of Ra, > 0, the cusp is shifted toward
positive 6. That means, to balance the suction effect
on the solid wall, the double WFR is possible only
when the porous wall is hotter than the solid wall.
Since the combined effects of suction and buoyancy,
in the case of Ra, < 0, tends to generate the double-
peak velocity profiles, the IFR mode can occur in a
wide range of J as seen in Fig. 10. It is noted that
the asymmetric wall heating can always provide a
premature condition for WFR, therefore, narrows the
FREF region. In the cases studied, see Fig. 9, the FRF
region shrinks to a narrow band as |5| > 0.3.

CONCLUDING REMARKS

In this paper, the mixed convection including the
threshold of the flow-reversal phenomena in radially
rotating SPC have been investigated over a wide range

of parameters. The results provided a theoretical basis
to understand the physics of this complex flow field.

The centrifugal buoyancy presents a salient in-
fluence on the hydrodynamic and thermal character-
istics. This confirms the significance of the centri-
fugal-buoyancy effect on the flow and heat transfer
in the rotating thermal systems. In radially outward
flow Ra, > 0. the centrifugal-buoyancy effect reduces
the heat transfer rate; but in the radially inward flow
Ra,, < 0, the heat transfer can be enhanced by this
effect.

The wall-suction effect is beneficial to the heat
transfer performance of the transpiration cooling as
expected. The wall suction, like the buoyancy-oppos-
ing effect, may also induce flow reversal. If both the
suction and buoyancy are considered, the combined
effect on the flow field and therefore the flow-reversal
mode is very distinct from that of pure suction.

Both the wall-suction and buoyancy-opposing
effect may induce flow reversal and thus destabilize
the flow field in the channel. Two maps of the critical
conditions have been developed ; and they may give a
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clear insight into this critical phenomenon. However,
flow reversal in fully-developed channel flow is still a
controversial and paradoxical subject. More theor-
etical studies, e.g. stability analysis, are required to
attain a comprehensive understanding of the flow
structure.

(=]

%)

n

REFERENCES

- A, S. Berman, Laminar flow in channels with porous
walls, J. dppl. Phys. 24, 1232-1235 (1953).

- S. W. Yuan and A. B. Finkelstein, Laminar pipe flow

with injection and suction through a porous wall, ASME
Trans. 88, 719-724 (1956).

. L. F. Carter and W. N. Gill, Asymptotic solution for

combined free and forced convection in vertical and
horizontal conduits with uniform suction and blowing,
ALCh.E. JI 10, 330-339 (1964).

. R. B. Kinney. Fully developed friction and heat transfer

characteristics of laminar flow in porous tubes, Int. J.
Hear Muass Transfer 11, 1393-1401 (1968).

. R. M. Terrill, Heat transfer in laminar flow between

parallel porous plates. fnt. J. Heat Mass Transfer 8,
1491-1497 (1965).

. G. Raithby, Laminar heat transfer in the thermal

entrance region of circular tubes and two-dimensional
rectangular ducts with wall suction and injection. Ine. J.
Hear Mass Transfer 14, 224--243 (1971).

. P. L. Donoughe. Analysis of laminar incompressible

flow in semi-porous channels, NASA TN 3739, NACA
(1956).

. E. R. G. Eckert, P. L. Donoughe and B. J. Moore,

Velocity and friction of laminar viscous boundary-layer
and channel flow over surfaces with ejection or suction,
NASA TN 4102. NACA (1957).

9.

10.

1815

S. J. Rhee and D. K. Edwards. Laminar entrance flow
tn a flat plate duct with asymmetric suction and heating.
Numer. Heat Transfer 4, 85-100 (1981).

M. M. Sorour and M. A. Hassab. Effect of sucking the
hot fluid film on the performance of flat plate solar
energy collectors, Appl. Energyv 14, 161-173 (1983).

. M. M. Sorour, M. A. Hassab and S. Estafanous, De-

veloping laminar flow in a semiporous two-dimensional
channel with nonuniform transpiration, /nt. J. Heat
Fluid Flow 8, 44-54 (1987).

. S. L. Moskowitz and S. Lombardo, 2750 Deg F engine

test of a trunspiration air-cooled turbine, ASME Trans..
J. Engng Pwr 93, 238-248 (1971).

. R. Raj. Deposition results of a transpiration air-cooled

turbine vane cascade in a contaminated gas stream,
ASME Trans.. J. Engng Pwr 105, 826--833 (1983).

. W.D. Morris, Heat Transfer and Fluid Flow in Rotating

Coolant Channels. Wiley, Chichester (1981).

. R.Siegel, Analysis of buoyancy effect on fully developed

laminar heat transfer in a rotating tube, ASME Trans..
J. Heat Transfer 108, 338-344 (1985).

. M. Rahman. On the numerical solution of the flow

between a rotating and a stationary disk. J. Comp. 4ppl.
Math. 4, 289--293 (1978).

. S. P. Harasgama and W. D. Morris. The influence of

rotation on the heat transter characteristics of circular.
triangular. and square-sectioned coolant passages of gas
turbine rotor blades, ASME Trans.. J. Turhomachinery
110, 34 50 (1983).

. Wo M. Kays and M. Crawford. Convective Heat and

Mass Transfer (2nd Edn), pp. 100--101. McGraw-Hill.
New York (1980).

. S. Ostrach, Combined natural and forced-convection

laminar flows and heat transfer in fluids with and without
heat sources in channels with linearly varying wall tem-
peratures, NASA TN 3141, NACA (1954).

CONVECTION MIXTE LAMINAIRE DANS UN CANAL SEMI-POREUX TOURNANT
RADIALEMENT

Résumé—On étudie les caractéristiques d’écoulement et de transfert thermique de la convection laminaire
dans un canal semi-poreux tournant radialement avec une transpiration uniforme et un gradient de
température constant a la paroi. L'effet de flottement est pris en compte en considérant la variation de
densité dans le terme de force centrifuge. On suppose une solution affine: les effets de rotation, de
transpiration et de chauffage pariétal sur les champs de vitesse et de température, le frottement a la paroi.
la perte de pression et le flux thermique sont analysés dans la solution de deux équations couplées
quasilinéaires. Des phénoménes d'écoulement de retour peuvent étre créés par la transpiration et le
flottement. Deux modes de retour d’écoulement et les conditions critiques associées sont ¢tudiés en détail
pour explorer le mécanisme de la convection mixte.

LAMINARE MISCH-KONVEKTION IN EINEM UM SEINE ACHSE ROTIERENDEN
HALBPOROSEN KANAL

Zusammenfassung—Stromung und Wirmeiibergang bei laminarer Misch-Konvektion in einem um seine
Achse rotierenden halbpordsen Kanal werden fiir den Fall gleichfdrmiger Transpiration und konstanter
Temperaturgradienten an der Wand untersucht. Auftriebseffekte werden durch eine Dichtevariation im
Term fiir die Zentrifugalkraft beriicksichtigt. Durch Lésen der beiden gekoppelten quasilinearen Gleich-
ungen werden die Einflisse der Rotation, der Transpiration un der Beheizung der Wand auf die
Geschwindigkeits- und Temperaturfelder, die Schubspannung, den Druckabfall und Wirmeiibergang
untersucht. Riickstromerscheinungen kénnen durch Transpirations- und Auftriebseffekte verursacht
werden. Zwei Arten der Riickstrémung und die damit verbundenen kritischen Zustinde werden detailliert
untersucht, um den Mechanismus der Mischkonvektion zu erforschen.
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JJAMHUHAPHAA CMENIAHHASI KOHBEKLIUA B PAJUAJIBHO BPAIIAIOIMEMCS
KAHAJIE U3 MMTOPUCTOT'O MATEPHAJIA

Anporams—lcceenyloTes AHHAMHYECKHE H TEIUIOBhIC XapaKTCPHCTHKH JIAMHHAPHOH CMEWAHHOH KOH-
BEKIHA B PagHAIbLHO BPAUIAIOMICMCA XaHAJIC H3 MOPHCTOrO MaTepHalla C OAHOPOXHBIM HCIAPEHHEM H
NOCTOSHHLIM IPAIHCHTOM TEMMNEPATYP Ha CTeHKe. JeficTBHE MOABEMHON CUILI YIHTHIBACTCA BEJIHIHHOM,
ONMHCHBAOLICH H3IMCHEHHE IUIOTHOCTH. Ha 0CHOBE NOMTyMEHHOro aBTOMOJCALHOTO PEILIEHHUS HCCICRYETCA
BIMAHHE BPALICHASA, HCIAPCHHSA H HAarpeBa CTEHKH HAa MOJIA CKOPOCTell M TEMMEpaTyp, MOBEPXHOCTHOS
TpeHue, Nepenan NABJICHHA H CKOPOCTb TEIUIONEPEHOCA NYTEM PELICHHA ABYX B3aHMOCBA3aHHBIX KBAa3H-
sHeRHbIX ypasteHnit. DddexTaMu HCIAapeHHS H NOALEMHON CHIIH MOTYT BBI3BIBATECA ABJICHHA ofpalue-
HHSA TeueHus. C UeNbio H3YHeHHA MEXaHHIMOB CMEUIAHHOH KOHBEKLIHH NOAPOGHO PacCMATPHBAIOTCK aBe
MoJIe/iH 06paleHus TeYeHHA H COOTBETCTBYIOLIHE KPHTHYECKHE YCIOBHA.



