
lm Y Heat itass Transient 'vo[. 3~, No  9, p p  1805 1816, 1990 18)17 93111 q~i St  I10 -I).1)0 
Pr in ted  in G r e a t  Br i ta in  , 1 'agt) P e r a a m o n  Pr~r~ pl~ 

Laminar mixed convection in a radially rotating 
semiporous channel 
C. Y. SOONG't" and G. J. H W A N G ~  

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 
Taiwan 30043, R.O.C 

(Receiced 17 Ju@ 1989 and hi final /brm 6 October 1989) 

Abstract--Flow and heat transfer characteristics of laminar mixed convection in a radially rotating 
semiporous channel with a uniform transpiration and a constant wail temperature gradient are examined. 
The buoyancy effect is taken into account through the consideration of the density variation in the 
centrifugal force term. A similarity solution is sought ; and then the effects of rotation, transpiration and 
wall heating on the velocity and temperature fields, the skin friction, the pressure drop and the heat transfer 
rate are investigated by the solution of the two coupled quasilinear equations. Flow-reversal phenomena 
can be caused by the transpiration and buoyancy effects. Two modes of flow reversal and the related critical 

conditions are studied in detail to explore the mechanism of the mixed convection. 

INTRODUCTION 

-I~Ht! KI.UID flOW and heat transfer in porous-walled 
flo~ passages have received a great deal of  attention 
in the past decades due to their wide application in 
a xariety of thermal systems such as gas-turbine 
rotor blades, combustion chambers, exhaust nozzles, 
porous-walled flow reactors and solar energy systems. 
The theoretical study may be traced back to Berman's 
similarity solution [t] for the incompressible lam- 
inar fully-developed flow in a two-dimensional fully 
porous-walled channel (FPC) with a uniform trans- 
piration. Later, Yuan and Finkelstein [2] developed 
the counterpart  similarity solution for flow in a 
porous-walled tube. Since then, the research in this 
area has become vital. The corresponding heat transfer 
characteristics were also investigated extensively [3- 
6]. Among these investigations, Carter and Gill 's work 
[3] is noteworthy. The similarity equations for mixed 
convection in vertical and horizontal FPCs and 
porous-walled tubes were proposed and solved by 
using methods of  weighted residuals. Suction and 
injection were considered, but only the solutions with 
a small wall suction (Re,, ~ l) were obtained due to 
the limitation of  the method they used. 

Flow and heat transfer characteristics in the semi- 
porous channel (SPC) are somewhat different from 
those in the FPC. The former case has been studied 
only' in a few previous works. Donoughe  [7] and 
Eckert et al. [8] solved Berman's equation for fluid flow 
in SPC. Heat transfer in the hydrodynamic and thermal 
entrance region of  SPC with a tail-end-plate was first 
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examined numerically by Rhee and Ed~\ards [9] 
Later, Sorour and Hassab [10] used the >olution of 
Berman's equation to recast the energy equation into 
an eigenvalue problem which was then sol~ed numeri- 
cally. More recently. Sorour et al. [1 l] reconsidered 
Rhee-Edward ' s  flow configuration ui th  a linearl~ 
varying transpiration velocity. 

At an engineering standpoint, the transpiration 
cooling in the turbine rotor blades can be modelled 
as the mixed convection in a radially rotating SPC. 
Rotat ion of  the channel may generate significant 
effects on the flow and temperature fields. To the 
attthors" best knowledge, however, the mixed con- 
vection in the radially rotating porous channels has 
not been reported in the literature vet. T~:e tspical 
transpiration cooling channel in turbine blades is of 
low height and width aspect ratio as those used in the 
engine tests [12, 13]. Therefore, to gain insight into 
the fundamental nature of this complex flo~ field, a 
two-dimensional mixed convection anal}sis in a radi- 
ally rotating semiporous channel is proposed for the 
problem. Both the case of  radiall? ou taa rd  and 
inward main flows are studied: and the rotational 
effects, including the Coriolis and centrifugal-buoy- 
ancy forces, are considered. By assuming a large semi- 
span eccentricity and slenderness of the channel, and 
imposing the thermal boundary condition of a con- 
stant wall temperature gradient, the similarit~ equa- 
tions are derived and then solved to examine the effects 
of rotation, transpiration and wall heating on the 
velocity and temperature fields, the skin friction, the 
pressure drop and the heat transfer rate. A closed- 
form analytic solution is found readily ~hen wall 
transpiration is absent. Flow reversal ma? be induced 
by wall-transpiration and buoyancy effects. The critical 
conditions for the threshold of  the flox~ reversal arc 
studied in various combinations of  the transpiration 
and wall heating parameters. 
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NOMENCLATURE 

Cr skin friction coefficient 
E semispan eccentricity 
f dimensionless stream function or 

transverse velocity, V/V. 
g dimensionless temperature, 

( T -  T~.)/(Pe" AT~um) 
H channel height 
h heat transfer coefficient 
k thermal conductivity 
L channel length 
Nu Nusselt number, hH/k 
P static pressure 
/~ reduced pressure, 

P+ (pco:/2)[(X+ Xo)2 + y2] 
P',p' dimensional and dimensionless pressure 

departure, p '  = P'/prU2o 
Pe Peclet number, Pr Re 
Pr Prandtl number, v/~ 
R position vector emanating from rotation 

centre 
Ra~, rotational Rayleigh number, 

(Xeo92flAT~H 3 Pr)/v ~ 
Re main flow Reynolds number, UoH/v 
Re~ wall suction Reynolds number, V~H/v 
Ro rotation number, coH/Uo 
T temperature 
AT~ characteristic temperature difference, rH 
U, V velocity components 
U0 mean velocity at X = 0 
Um mean velocity at axial location X, 

Um-~- Urn(X) 

u, v dimensionless velocity components, 
U/Uo and V/Uo 

X, Y coordinates 
x, y dimensionless coordinates, X/H and Y/H. 

Greek symbols 
thermal diffusivity 

fl thermal expansion coefficient 
6 dimensionless wall temperature 

difference, (Tpw- Tsw)/(Pe ATcu~,) 
dimensionless semispan eccentricity, 
E/H 

0 dimensionless temperature difference, 
( T -  T~)/A T¢ 

# viscosity 
v kinematic viscosity 
H pressure-drop parameter, 

i~ [ ( -  Rex/pU2m)(OP/&x) 
+ 2Ro Rew(Uo/Um)f] dy 

p density 
T solid wall temperature gradient 
q~ stream function 
c9 rotational speed. 

Subscripts 
cr critical condition 
m mean 
pw porous wall 
r reference condition 
sw solid wall 
co rotational condition. 

THEORETICAL ANALYSIS 

Flow configuration and basic equations 
As shown in Fig. 1, a semiporous channel with solid 

and porous wails separated by a height H rotates at 
a speed ~o about an axis perpendicular to the axis of 
the channel. The rotational axis lies at a distance Xo 
away from the origin of the coordinate system which 
is fixed on the channel entrance. Fluid flows along the 
channel axis as well as bleeds out through the porous 
wall at a constant transpiration velocity V~ along the 
channel length. Two modes of main flow, radially 
outward and inward, are considered. The flow is 
assumed to be laminar and steady, and the com- 
pression work and the viscous dissipation are negli- 
gible. Since the buoyancy effect may be significant 
in the presence of the high centrifugal acceleration, 
Boussinesq's approximation is invoked to allow for a 
linear variation of density with temperature, in the 
centrifugal force term. The gravitational effect, in this 
problem, is comparatively small and can be neglected. 

Subject to the above conditions, the conserva- 
tion equations for mass, momentum and energy are 

depicted as follows [14] : 

v . v = 0  (1) 

(V- V)V = vV2V-VP'/pr  

+ f l ( T -  T~)(co × co x R)-2co  x V (2) 

(V" V) T = ~V" T (3) 

where P" = P - P r  is the pressure departure from the 
reference condition, subscript r denotes the condition 
at the origin (0, 0) and is used as the reference con- 
dition, and R the position vector emanating from 
the rotation centre. The governing equations can be 
writtten in dimensionless forms as 

&u g v  
- -  + ~ -  = 0 ( 4 )  
8x vy 

~u &t 1 ~p" 
u-z-+v-z-= V2u - - -  

cx cy Re &x 

Ra,~ ( ~ ) O + 2 R o ' v  (5) 
Pe Re . 
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FIG. 1. Flow configurations and coordinate system : PW, porous wall : SW. solid ~alI. 
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The reference velocity 6'o used is the mean velocity 
at ,V= 0, T~ = T,~(0) is the solid-wall temperature 
at X = 0 and AT¢ is the characteristic temperature 
difference to be determined later. The two non-dimen- 
sional groups, the rotation number Re and the 
rotational Rayleigh number Ra<~, characterize the 
Coriolis force and the centrifugal-buoyancy effects, 
respectively. On the right-hand side of  equation (5), 
the upper plus sign in the buoyancy term is taken if 
the main flow is radially outward and the lower minus 
sign if the flow is radially inward. 

The boundary conditions on the solid and porous 
walls are u = c = 0  and 0 = 0 ~ ( x )  at y = 0 :  and 
u = r -  r,,. = 0 and 0 = 0p~ (x) a t y  - 1. The subscripts 
sw and pw denote the solid wall and the porous wall, 
respectively. 

Similarity transformation 
To achieve a similarity solution for the above 

governing equations, the proper invariant profile 
functions must be found. Since the fluid is substracted 
through the porous wall at the rate of  p V~ per unit 
length, the local mean velocity along the channel 
length is thus U~(,V) = U o -  V~X/H or in a dimen- 
sionless form u,~(x)= l - t ' ,~x .  Following Berman's 
original proposal for the fully-developed flow, the 

stream function is defined as 

'P(x,y) = u~(x)" t (  y). (~) 

By defining u = ( ~ . ' ( v  and c = - ("t~' ?.v, one has 

U/Um = j " ( y )  and cc~ = j l y ) .  (9) 

Note that equations (9) satisfy continuity equation 
(4) automatically. Eliminating the pressure terms in 
the momentum equations (5) and (6) by a cross 
differentiation and using equations (9). one has the 
resultant equation of  motion 

f" R " -- e w ( j j ' " - f ' f " l  

Ra,., (.,  +_ .v, ~0 ~b0"  / 
= ~ - - -  ; . . . .  " (10) 

Pe'um , .v~ (v  .% &v/ 

where Re,, = !/,,H/v is the wail Reynolds number 
which characterizes the effect of  wall transpiration. 

To simplify the analysis, two approximations are 
employed. First, the channel length is sutSciently 
small as compared with the semispan eccentricity [15]. 
This leads to simplifications (X+_X,),X,. ~ +_+_+ 1 and 
e)'-(X+_Xo) ~= +_ta:)(~. Second. the coolant channel is 
very slender, Y.X~ << 1, and also has {0' O' >> b0 (.v. 
Consequently, the last term in equation (10) can be 
ignored. 

Two situations, the buoyancy-opposed mixed 
convection with Ra,j(x+_xo)& > 0 and buoyancy- 
assisted one with Ra~(x+xo)/X, < 0 are considered. 
To unify the equation of  motion, the sign o f ( x +  x0) x~ 
can be absorbed into the parameter Ra,.  The positive 
Ra<,, is responsible for the case of  buoyancy-opposed 
flow and the negative Ra,,, stands for the case of buoy- 
ancy-assisted flow. Finally. equation (10) reduces to 
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~, Ra,~ 80 
f - R e ~ ( f f " - f ' f " )  = - -  (11) ee'um ~v" 

Equation (I 1) implies that the similarity form exists 
if O(x, y) is of the form 

where 
O(x,y) = O~(x)+Pe'um(X)'g(y).  (12) 

Substituting equation (12) into the energy equation 
(7), one obtains 

T;w(X) 
g " - P r  Re~ , ( fg ' - f ' g )  = "f" A L  

T~(x)  
03)  

Pe" um(X) "ATe" 

To attain the similarity, T~,(x) must be linear 
in x and, for convenience, it is specified as 
T~(x) = T,w(0)+AT~x. The characteristic temper- 
ature difference can now be determined at AT~ = 
zH, in which z is the slope of the prescribed 
solid-wall temperature. By defining g ( l ) =  5, the 
porous-wall temperature Tpw(x) can also be expressed 
in a linear form. The parameter 3 represents the tem- 
perature difference between the solid and the porous 
walls ; and therefore, it is also an index of asymmetry 
of the wall heating. 

Finally, by using the similarity variables fO ' )  and and 
909 and imposing different constant temperature 
gradients to the walls, the resultant similarity equa- 
tions are 

f ~ - - R e ~ ( f f " - - f ' f " )  = Ra~,'g" (14) 

g " - P r  R e w ( f y ' - f ' g )  = f ' .  (15) 

The associated boundary conditions are 

f ( O )  = f ' ( O )  = f ' ( 1 )  = f ( l ) - -  1 = 0 

g(O) = g(1)--3  = O. (16) 

Flow and heat transfer parameters 
The general expression for the skin friction co- 

efficient is defined as 

Cf = 21~(SU/SY),/pU~,(X). (17) 

Then, based on the velocity solution of the problem, 
the products of the friction coefficient and the 
Reynolds number for the solid and porous walls are 

Cr,~w Rex = 2f"(0) (18) 

and 

Cr.pwRe~ = --2f"(1)  (19) 

respectively. Re~ is the Reynolds number based on the 
local mean velocity, UmH/v. 

The pressure-drop parameter H is defined as the 
cross-sectional average of 

8P 

pU~, . \ u . , ]  

wherein the contributions of the Coriolis and cen- 

trifugal forces have been involved, and 

l-I = - f " ( O )  - Raw gO') dy 

p ro  ~- 
/~= P +  ~ -  [ (X+X0)"+ y2] 

(20) 

is the reduced pressure. 
The heat transfer rate is characterized by the Nus- 

selt number. From the heat balance at the wall, the 
Nusselt number can be defined as 

Nu = hH/k = - ( ~ T / S Y ) w / ( T , -  Tb) (21) 

where 

1 fn 
T~(X) = ~ j  ° U T d Y  

is the bulk temperature of the fluid. The resultant 
Nusselt numbers at solid and porous walls can be 
written as 

Nu~ = g'(O)/ Jo f ' g  dy (22) 

O. 
In the case of Rew ~ O, the integral in equations 

(22) and (23) can be evaluated directly by integrating 
energy equation (15) 

~01 f ' g  d v 
3 1 

. = ~ + ~ [1 +g ' (O ) -g ' ( 1 ) ] .  (24) 

When transpiration is absent, this integral can be 
evaluated simply by using the analytic solutions of 
zero transpiration. 

ANALYTIC SOLUTIONS FOR ZERO 
T R A N S P I R A T I O N  

Equations (14) and (15) with the associated bound- 
ary conditions (16) describing the present problem are 
coupled high-order quasi-linear differential equations. 
Exact analytic solution to this problem is almost im- 
possible. The case of zero transpiration, i.e. Rew ---- O, 
however, removes the nonlinearity and highly 
simplifies the system. In this circumstance, one has 

f ~ - - R a ~ f ' = O  or fV - -Ra~f=J~ ' (O) .  (25) 

The corresponding five boundary conditions are 

f(O) = f ' ( 0 )  = f ( 1 ) - -  1 = f " ( l )  = 0 

and 

1 
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Mathematically, the solutions are different in the where 
cases of  Ra,,, = 0, > 0  and < 0  corresponding phys- 
ically to the pure forced convection, the buoyancy- f" (0)  = 
opposed and the buoyancy-assisted mixed convection, 
respectively. The closed-form solutions are found 
analytically as follows. 

A. Forced convection (Ra,~ = O) f'"(O) = 

f ( ) ' )  = 3) '2 --2.!. '3 (27) 

, v ( y )  = (,5 - ' ) y + . v  3 - { y L  ( 2 s )  

.l'i~(O) = 
This is the so-called Poiseuille-type flow. 

B. Buoyancy-opposed mixed convection (Ra,, > O) 

. /(y) = (7"~ + C2 sinh K y +  C3 cosh Ky A, = 

+ Ca sin K3'+ Cs cos Ky (29) 

1 {C,[(cosh K v + c o s  Kv) .q(.v) = ,Sy+ ~ . 
ki= 

- v ( c o s h  K + c o s  K ) - 2 ( 1  - y ) ] + C f f s i n h  Ky  k~ = 

- y - s i n h K ) + C s ( s i n K y - y ' s i n K ) }  (30) a =  

1 
~ [ S a " ` 5 ( k 2 - k 3 ) Z - S a S k l ( k 2 + k , )  

- 8a~( 1 - k4)(k: - k 3) - 16d'`5k, ( I - k 4)] 

I 
[Sa"(k: - k d : +  16a:`5( 1 -k~)(k2 +k ~) 

+Sae'(k:+k3) 2 -  16aT`skl(k2-k O] 

, [16a:(l -k~) (k2+k~)+32a~dki  

- 16as`5(ki - k ~ )  - 16aTk~ (k2-kO]  

2 a ~ ( k : - k  d ~ +4a3(I - k . d 2 ( k , + k . )  

- 4 a ~ k ~ ( k , + k  O + 2a~(k:-,-k d(k~ - k  :~) 

-Sa3k l (1  - k D ( k : - k ~ )  

sin a-s inh a;  k ~ = s i n a ' c o s h a  

co s  a - s i n h  a :  k 4 = c o s a ' c o s h a  

( -  Ra,, 4) ~ 

where 

1 
Cs = ~7 [2 sinh K(I - c o s  K ) -  K`5[sin K-sinh K 

--(1 +cos  K)(cosh K -  1)]} 

I 
Ca = A~ ~.Ka[sinh K(cos K -  l )+s in  K(cosh K -  1)1 

- 2  sin Ksinh K} 

C3 = C4(cosh K - c o s  K)/sinh K +  Cs sin K/sinh K 

C : =  --C4;  CI = - C 3 - C 5  

&~ = -4 [ s inh  K(I - c o s  K ) - s i n  K(cosh K -  1)] 

K = Ra,l, "* 

C. Buoyancy-assisted mixed convection (Ra<,, < O) 

f " ( 0 )  
/(_v) = 2a-'- sin ay" sinh av 

4- f" ' (0)  (sin av 'cosh a v - c o s  av "sinh ay) 

+ J~'(O)4a ~ (1 --cos ay 'cosh ay) (31) 

f " ( 0 ) , .  
q()') = `53'-- 4~T-a3 lsm a y ' c o s h  av 

--cos ay" sinh a v - y ( k 2 - k 3 ) ]  

f " (O)  [1 - c o s  av" cosh a v - y ( 1  -k4 ) ]  
4a* " " 

/ ~ ' ( 0 ) . .  
+ ~ [sm ay" cosh ay 

- c o s  ay" sinh a y - y ( k ,  +k3)] (32) 

NUMERICAL  M E T H O D  OF SOLUTION 

Solutions of  non-zero transpiration are solved by 
using a numerical method described in this section. 
The set of  equations (14)-(16), is a sixth-order quasi- 
linear system with three boundary conditions at each 
end of  the finite interval 0 ~< y ~< 1. With the guessed 
values of  missing boundary conditions at y = 0, i.e. 
f" (0)  = :~1, f ' " (0)  = :~2 and g'(O) = :~3, the boundary- 
value problem can then be converted to an initial- 
value one, and solved by using a fourth-order Runge 
Kutta scheme. The values :~, :~, and :~ are sought 
under the conditions of  f ( l ) =  1, f ' ( 1 ) = 0  and 
g(1) = `5. The corrections A:q's can be obtained by a 
modified Newton 's  method [16] and, therefore, the 
initial guesses can be updated. The procedure is 
repeated until the criterion, max(A:~>A:~>k:~J-<. 
10- v is satisfied. 

In a preliminary numerical experiment, it is found 
that the integration procedure with a step size 
Ay = 0.01 is most pertinent and is adopted through- 
out the numerical computation.  In the determination 
of  the location of  the flow reversal a step size 
Ay = 0.005 is used. The analytic solutions in the last 
section provide good initial guessed values for low- 
Re~ cases, and the calculations for the larger ~alues 
of  Re,~ can be performed with the knowledge of the 
preceding cases. In the calculation, it is found that 
only a few iterations are needed to obtain a convergent 
solution. The number of  iterations increases with the 
increase in the value of  Re,,.. The convergent solution 
can be easily obtained for Re,,. <<. 7. but it is hard to 
get for Rew > 7. This is attributed to the stiffness of  
the problem as Re~ increases. The solution can be 
obtained by introducing under-relaxation/actors  2, to 
the corrections of  :G i.e. :~, + 2,k:r,. 
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2.6 
General features 

Since air is considered as the coolant, a value of the 
Prandtl number of 0.7 is used in the present com- 
putations. Besides, there are four parameters, Ro, 
Ra~,, Re, and 6, involved in the problem. Among 
these parameters, the rotation number Ro charac- 
terizing the Coriolis effect was eliminated in the 
cross-differentiation of the x- and y-momentum equa- 
tions. Physically, the Coriolis force, provides only the 
pressure distribution in this two-dimensional channel. 
The main flow Reynolds number is absorbed into the 
similarity variables and will not be presented 
explicitly. The rotational Rayleigh number Ra~,, plays 
a very significant role in the problem. The magnitude 
of Rao, depends mainly on the rotational speed and 
the wall-temperature gradient ~ ; and the sign of Raw 
depends on the type of buoyancy-assisted or buoy- 
ancy-opposed mixed convection. The asymmetry of 
the flow and temperature fields can be induced by 
the wall-transpiration and asymmetric wall-heating 
condition. The two sources of asymmetry are char- 
acterized by Re, and 3, respectively. 

Velocity and temperature distributions 
Under the conditions of zero transpiration Rew = 0 

and symmetric wall heating 6 = 0, the flow and tem- 
perature fields in the channel are symmetric as shown 
in Fig. 2. The velocity and temperature distributions 
can be changed by the centrifugal force along the 
channel axis. The fluid near the hot walls is heated 
and retarded by the centrifugal-buoyancy force for 
Raw > 0, therefore, the velocity profiles near the 
channel axis must be extruded to satisfy the global 
continuity. The velocity profiles are distorted con- 
tinuously with the increasing Raw. As Raw = 500.6, 
the wall shear becomes zero. It is a critical value for 
the threshold of the flow reversal which occurred at 

1 1 1 1 1 1 1 1  I 

~ = 0  R~  
6 = 0 14.5 

2.0 

1.5 

f' 
1.0 

0.5 

0.0 

-0.5 
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0.0 0.2 0.4 0.6 0.8 1.0 

Y 

FIG. 3. Forced flow solution of semiporous channel flow. 

the walls. On the contrary, in the case of Ra~, < O, 
the velocity near the walls increases and the velocity 
profile near the channel axis is flattened. The flow 
velocity at the centre of the channel reduces to zero 
as Ra,, = -6234.  This is a critical value for the in- 
field flow reversal. From Fig. 2(b), it is evident that 
the temperature solution can also be altered by the 
buoyancy effect• The larger the local velocity is, the 
cooler the fluid is. 

In the case of pure forced convection, Ra~, = 0, 
equations (14) and (15) are decoupled and the equa- 
tion of motion (14) is reduced to the so-called Berman 
equation. The solution is shown in Fig. 3. The peak 
velocity shifts toward the porous wall due to the wall 
suction. The local velocity in the channel remains non- 
negative until a critical Rew is reached. The critical 
Rew for the flow reversal in the SPC is 13.12. 

Figure 4 shows a typical ease of the buoyancy- 
assisted flow with an asymmetric wall heating, 

o.oo F,,. . . . . .  j 
Re w = 0 

~=0 
2.5 -0.06 Ra w 

2.0 

1.0 ~ _0.15 f 
o.o 

600.6  
-0.20 i000 

0.0 

-0.6 -0.26 ' ' ' 
0.0 0.2 0.4 0.6 0.6 1.0 0.0 0.2 0.4 0.6 0.8 

Y Y 
(a) (b) 

FIG. 2. Symmetric flow and temperature fields with Re. = 3 = 0. 

I 

1.0 
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(a)  

0.2 

0,1 

0.0 

-0.1 

g - 0 . 2  

-0 .3  

- 0 . 4  

- 0 . 5  

-0 .6  

Raco = -500 

6 =--0.2 

-0 .7P  
f 

' i ' ' ' 1 6 ' o 1 8 '  - % , o  0 2  o ,  o 
Y 

(b) 

FIG. 4. Combined effect of suction and buoyancy in the cases of mixed convection with asymmetric v, all 
heating. 

Ra,,, = - 5 0 0  and b = - 0 . 2 ,  in which a behaviour 
caused bv the coupled effect of  wall suction and cen- 
trifugal buoyancy is revealed. The wall and fluid 
temperature difference, in the present SPC flow, is 
increased by the suction effect as shown in Fig. 4(b), 
and the buoyancy effect is augmented. The fluid near 
the walls can thus be further accelerated by the extra 

buoyancy force and a double-peak velocity profile can 
be generated. This is different from the one shown in 
Fig. 3. 

Figure 5 shows the velocity and temperature dis- 
tributions for the cases of  flow reversal free (FRF)  for 
a suction rate Re,, = 5 with various buoyancy and 
wall-heating conditions. For  a highly asymmetric wall 
heating 6 = 0.5 or - 0 . 5 ,  the flow-reversal-Dee region 
is very narrow, e.g. - 138 .0  ~< Ra,, <~ 132.9 in Fig. 
5(a). the velocity profiles are not much distorted from 
that of  Ra,, = 0. For  small values of  6, from Figs. 
5(b) and (f), the velocity profiles still present a slight 
variation for the cases of  Rao, > 0. But in the cases of 
buoyancy-assisted mixed convection Rao, < 0, highly 
distorted double-peak profiles result. The larger peak 
occurs near the hotter  wall due to the buoyancy assist- 
ing effect. It is seen from Fig. 5(d) that, the asymmetry 
of  the flow field arises simply from the wall trans- 
piration. F rom the general view of  Figs. 5(a)-(g), 
the temperature profiles are not so sensitive to the 
buoyancy effect as the velocity ones. 

Flow and heat transfer parameters 
The typical variations of  the skin friction, pressure 

drop and heat transfer rate are shown in Figs. 6-8. The 
buoyancy-assisting effect, in general, may enhance the 
heat transfer but with the at tendant  penalty of  high 
friction and pressure loss. On the contrary, the buoy- 
ancy-opposing effect reduces the skin friction and 
pressure drop as well as the heat transfer rate. 
The present prediction of  centrifugal-buoyancy effects 
confirms the argument and experimental results pro- 

Table I. Nusseh number singularity in the case of as? mmetric 
wall heating: Re~ = 2 and ,'3 = 02 

Ra, Nu... '\'G,,, \ ~ 

209.3 5.240 3.660 8.901 
0 6.974 4. I 12 [ I .(!9 

- 200 9.959 4.521 14.48 
-400 17.46 4.899 22.36 
- 600 85.04 5.244 90.2 x 
-61{) 106.6 5.260 111.9 
-630 218.0 5.293 223." 
- 640 460.5 5.309 -t 65. S 
-649+ ~ - z 5.323 ~ - :c 
- 660 - 370.5 5.341 - 165.2 
-68/) - 131.2 5.373 - 125.b; 
- 800 - 25.99 5.558 - 2(_).23 

- 1000 - 10.38 5.844 4.5~9 
- 1500 - 3.264 6.458 ~. 194 
-- 1896 - 1.568 6.866 5.298 

i Singularity, due to T., - T, = 0. 

posed by Morris [14], and Harasgama and Morris [17]. 
In some cases of  asymmetric wall heating d # 0. the 

singularity in the Nusselt number may appear like 
that shown in Table 1. It is attributed to the situation 
of  T ~ -  Tb = 0 and it will not destroy the validitx and 
usefulness of the Nusselt number [18]. 

Flow reversal and critical conditions 
In the present rotating SPC, the flow reversal can bc 

induced by the centrifugal buoyancy and wall suction. 
Two modes, namely wall flow reversal (WFR) and in- 
field flow reversal (IFR),  are presented. 

In the symmetric flow (Rew = (5 = 0) as shown in 
Fig. 2. it is seen that the flow is reversed near the 
wall y = 0 due to the buoyancy-opposing effect, but 
reversed at the channel axis due to the buoyancy- 
assisting effect. The pure suction effect tends to sep- 
arate the flow near the solid wall as seen in Fig. 3. 
Nevertheless. if the buoyancy and suction are both 
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FIG. 5. Flow-reversal-free solutions of mixed convection with fixed suction rate Rew = 5. 
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considered, the flow-reversal mechanism becomes 
coupled and complicated. The IFR, in Fig. 4, induced 
by the wall suction under the thermal influence is 
distinct from the WFR mode presented in Fig, 3 with- 
out the thermal effect. 

Table 2 lists the critical Rayleigh number R a  . . . .  and 
the location y~ where the flow reversal occurs. Figures 
9 and l0 are the corresponding flow-reversal par- 
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FIG. 9. Critical parameter map for flow reversal in the rotat- 
ing SPC : FR, flow reversal ; FRF, flow reversal free. 

ameter m a p s  Figure 9 shows the critical mt{rgin and 
the FRF regime. For at given Re,, the bounding curve 
of  the F R F  region consists of  a cusp in the buoyancy- 
opposed flow regime (Ra., > 0), and a floral recep- 
tacle-like part in the buoyancy-assisted flow regime 
(Ra~, < 0). The general feature of  this map is illus- 
trated as follows by using the curves of  Re, = 0 a s  a 

typical example. 
For  Re,. = 0, the F R F  region is symmetric and a 

cusp is located at 6 = 0. The flow reversal occurs at 
both walls simultaneously. The left and right curves 
to the cusp are critical boundaries corresponding to 
the flow reversal at solid and porous ~alls. respec- 
tively. Anyway, only the W F R  mode appears in this 
buoyancy-opposed flow regime. In the buoyancy- 
assisted flow, however, either the W F R  or the IFR 
mode is possible and its occurrence depends on the 
thermal boundary condition, i.e. the value of ,5. The 
effect of  6 on the flow-reversal location can be found 
in Fig. 10. In the zero-transpiration case. the IFR 
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FIG. 10. Flow-reversal location in the cases of buoyancy- 
assisted mixed convection in the rotating SPC. 



1814 C. Y. SOONG and G. J. HWANG 

Table 2. Critical conditions for the flow reversal 

,Re+ ~ 0 

Opposed Assisted 

Re+ = 2 

Opposed Assisted 

Rat,., )'¢r Ra~., Y~r 

1.0 62.28 1.000 -85.57 0.000 
0.8 75.34 1.000 -- 112.2 0.000 
0.5 109.9 1.000 --212.0 0.000 
0.3 158.6 1.000 -- 527.1 0.000 
0.2 204.0 1.000 - 1175 0.194 
0.1 287.2 1.000 - 5308 0.437 
0.0 500.6t I and 0 -6234 0.500 

-0.1 287.2 0.000 -5308 0.563 
-0 .2  204.0 0.000 - 1175 0.806 
-0 .3  158.6 0.000 -527.1 1.000 
-0 .5  109.9 0.000 --212.0 1.000 
-0 .8  75.34 0.000 -- 112.2 1.000 
- 1.0 62.28 0.000 - 85.57 1.000 

68.89 1.000 - 68.18 0.000 
76.13 1.000 - 90.96 0.000 

I 11 .4  1.000 -- 181.6 0.000 
161 .6  1 .000  - -  5 1 5 . 3  0.000 
209.3 1.000 - 1896 0.245 
299.5 1.000 - 5032 0.455 
249.1 0.000 -- 5166 0.520 
173.1 0 .000 -3723 0.580 
131.9 0.000 - 1614 0.735 
106.3 0.000 -560.4 1.000 
76.53 0.000 --214.8 1.000 
53.82 0.000 - 113. I 1.000 
44.92 0.000 - 86.11 1.000 

n e  w ~ 5 

Opposed Assisted 

6 Ra ...... Yet Ra ...... 3'or 

R e w = 7  

Opposed Assisted 

Ra , .~ r  3'¢~ Ra ...... Yet 

1.0 73.76 1.000 -- 39.40 0.000 
0.8 90.49 1.000 -- 55.32 0.000 
0.5 138.0 1.000 -- 132.89 0.000 
0.3 191.8 0.000 --541.3 0.315 
0.2 137.8 0.000 --2114 0.315 
0.1 98.85 0.000 --4498 0.485 
0.0 74.61 0.000 --3363 0.555 

- 0 .  I 59.24 0.000 -1832 0.630 
- 0.2 48.90 0.000 -- 929.5 0.730 
-0 .3  41.54 0.000 --512.5 0.850 
-0 .5  31.85 0.000 --223.2 1.000 
-0 .8  23.54 0.000 -- 119.8 1.000 
- 1.0 20.05 0.000 - 92.02 1.000 

90.19 1.000 - 17.38 0.000 
176.0 1.000 -- 26.74 0.000 
102.4 0.000 --96.39 0.000 
46.08 0.000 --607.0 0.365 
32.69 0.000 ~2291 0.365 
24.88 0.000 -3891 0.510 
19.95 0.000 -- 1871 0.600 
16.60 0.000 --825.4 0.695 
14.20 0.000 - 502.3 0.765 
12.39 0.000 --352.1 0.825 
9.869 0.000 -- 206.8 0.930 
7.552 0.000 -- 119.1 1.000 
6.528 0.000 --92.88 1.000 

t -501 [19]; -507 [3] in gravitational field. 

mode appears  at ]6] ~< 0.2407, beyond this regime the 
flow reversal is switched to the W F R  mode. 

The presence of  wall suction destroys the symmetry 
of  the curves as well as narrows the F R F  region. 

In the region of  Ra~, > 0, the cusp is shifted toward 
positive 6. That means, to balance the suction effect 
on the solid wall, the double W F R  is possible only 
when the porous wall is hot ter  than the solid wall. 
Since the combined effects o f  suction and buoyancy, 
in the case of  Ra~, < 0, tends to generate the double- 

peak velocity profiles, the IFR  mode can occur in a 
wide range of  6 as seen in Fig. 10. It is noted that 
the asymmetric wall heating can always provide a 
premature condit ion for W F R ,  therefore, narrows the 
F R F  region. In the cases studied, see Fig. 9, the F R F  
region shrinks to a narrow band as 161 > 0.3. 

C O N C L U D I N G  R E M A R K S  

In this paper, the mixed convection including the 
threshold of  the flow-reversal phenomena  in radially 
rotating SPC have been investigated over a wide range 

of  parameters.  The results provided a theoretical basis 
to understand the physics of  this complex flow field. 

The centrifugal buoyancy presents a salient in- 
fluence on the hydrodynamic and thermal character- 
istics. This confirms the significance of  the centri- 

fugal-buoyancy effect on the flow and heat transfer 
in the rotating thermal systems. In radially outward 
flow Ra,~ > 0. the centrifugal-buoyancy effect reduces 
the heat transfer rate ; but in the radially inward flow 
Rao, < 0, the heat transfer can be enhanced by this 

effect. 
The wall-suction effect is beneficial to the heat 

transfer performance of  the transpirat ion cooling as 
expected. The wall suction, like the buoyancy-oppos-  
ing effect, may also induce flow reversal. If  both the 
suction and buoyancy are considered, the combined 
effect on the flow field and therefore the flow-reversal 
mode is very distinct from that of  pure suction. 

Both the wall-suction and buoyancy-opposing 
effect may induce flow reversal and thus destabilize 
the flow field in the channel. Two maps o f  the critical 
condit ions have been developed ; and they may give a 
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clear ins igh t  in to  this  cri t ical  p h e n o m e n o n .  H o w e v e r ,  

flow reversal  in fu l ly -deve loped  c h a n n e l  f low is still a 

con t rove r s i a l  a n d  p a r a d o x i c a l  subject .  M o r e  theor -  

etical  s tudies ,  e.g. s tab i l i ty  ana lys i s ,  a re  r equ i r ed  to 

a t t a in  a c o m p r e h e n s i v e  u n d e r s t a n d i n g  o f  the  f low 
s t ruc tu re .  
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CONVECTION MIXTE L A M I N A I R E  DANS UN C A N A L  SEMI-POREUX T O U R N C N T  
R A D I A L E M E N T  

R~sumg~On btudie les caract6ristiques d'+coulement et de transfert thermique de la convection laminaire 
dans un canal scmi-poreux tournant  radialement avec une transpiration uniforme et un gradient de 
temperature cons tan t / t  la paroi. L'effet de flottement est pris en compte en consid6rant la variation de 
densit8 dans le terme de force centrifuge. On suppose une solution at'fine: les effets de rotation, de 
transpiration et de chauffage pari6tal sur les champs de vitesse et de temp6rature, le frottement/t  la paroi. 
la perte de pression et le flux thermique sont analys~s dans la solution de deux bquations coupldes 
quasilin+aires. Des ph+nom~nes d'6coulement de retour peuvent ~tre cr66s par la transpiration et le 
flottement. Deux modes de retour d'~coulement et les conditions critiques associ~es sont 6tudids en d+tail 

pour explorer le m6canisme de la convection mixte. 

L A M I N A R E  M I S C H - K O N V E K T I O N  IN EINEM UM SEINE ACHSE ROTIERENDEN 
H A L B P O R O S E N  K A N A L  

Zusammenfassung--St r6mung und W/irmefibergang bei laminarer Misch-Konvektion in einem um seine 
Achse rotierenden halbpor6sen Kanal  werden ffir den Fall gleichf6rmiger Transpiration und konstanter 
Temperaturgradienten an der Wand untersucht. Auftriebseffekte werden dutch eine Dichtevariation im 
Term ffir die Zentrifugalkraft berficksichtigt. Durch L6sen der beiden gekoppelten quasilinearen Gleich- 
ungen werden die Einflfisse der Rotation,  der Transpiration un der Beheizung der Wand auf  die 
Geschwindigkeits- und Temperaturfelder, die Schubspannung,  den Druckabfall und W/irme/ibergang 
untersucht.  Riickstr6merscheinungen k6nnen durch Transpirations- und Auftriebseffekte verursacht 
werden. Zwei Arten der R/ickstr6mung und die damit  verbundenen kritischen Zustfinde werden detailliert 

untersucht, um den Mechanismus der Mischkonvektion zu erforschen. 
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f lAMHHAPHAf l  CMEI]IAHI-IAfl KOHBEKUH~I B P A ~ H A f l b H O  BPAIIIAIOI~EMC~I 
KAHA.rlE H3 HOPHCTOFO MATEPHA.rIA 

AmaOTSUW--HCCeYle~yloTcM ~LHHaMHqeCICHe H TcruIoBIde xapag'rCpHCTHKH JXaMHHapHofi CMeRIaHHOn gOH- 
Begtl~H B pa~na.~Ho spamatomeMca galla~le H3 nopa~roro MaTepnaaa ¢ o~mopo~1~t  ncnapeHneM H 
n 0 C T O ~  ~ e w r o M  TeMnepaTyp Ha CTeHgC. ~eflcrsKe no~CMHO~i C ~  yqm'bwaeTca t~.Ymq~mofi, 
onacxsaIome~ X3MeHeHHe n~OTHOCTH. Ha ocnose no~yqeunoro aBTOMO~te~bHoro pemesxa Hcc~e~yeTca 
~mmme spame~ma, ncnapem~q a narpesa cTexgn na no~q cgopocret~ H TeMnepaTyp, nosepxHOCTHOe 
rpenae, nepena~ ~asnelma a c z o p o c ~  Ten~onepenoca nyreM pemeHKa asyx s ~ o c s a ~ a n H ~ t x  gsa3n- 
~msegmux ypasnemai. 3¢~er raMn HcnapeHna n no~weMno~ c ~ a  MOryT Sm3,JSaTbCa naeHxa  o6pame- 
nua TeqeHua. C Uenmo H3yqeHHa MexaHH3MOB cMemaltHOR IgOHBeKUHH noapo6tto paccMaTpHsa~Tcx abe 

MO~e:m o6pame~ma TeqeHH.q H COOTBeTCTByIOLt/~e gpHTHqecKHe yc:tOSHa. 


